Search results for "memetic computing"

showing 6 items of 6 documents

Disturbed Exploitation compact Differential Evolution for Limited Memory Optimization Problems

2011

This paper proposes a novel and unconventional Memetic Computing approach for solving continuous optimization problems characterized by memory limitations. The proposed algorithm, unlike employing an explorative evolutionary framework and a set of local search algorithms, employs multiple exploitative search within the main framework and performs a multiple step global search by means of a randomized perturbation of the virtual population corresponding to a periodical randomization of the search for the exploitative operators. The proposed Memetic Computing approach is based on a populationless (compact) evolutionary framework which, instead of processing a population of solutions, handles …

Continuous optimizationta113education.field_of_studyMathematical optimizationInformation Systems and ManagementOptimization problemdifferential evolutionCrossoverPopulationEvolutionary algorithmComputer Science ApplicationsTheoretical Computer ScienceArtificial IntelligenceControl and Systems Engineeringmemetic computingDifferential evolutionMemetic algorithmevolutionary algorithmseducationcompact algorithmsSoftwarePremature convergenceMathematicsInformation Sciences
researchProduct

Ockham's Razor in Memetic Computing: Three Stage Optimal Memetic Exploration

2012

Memetic computing is a subject in computer science which considers complex structures as the combination of simple agents, memes, whose evolutionary interactions lead to intelligent structures capable of problem-solving. This paper focuses on memetic computing optimization algorithms and proposes a counter-tendency approach for algorithmic design. Research in the field tends to go in the direction of improving existing algorithms by combining different methods or through the formulation of more complicated structures. Contrary to this trend, we instead focus on simplicity, proposing a structurally simple algorithm with emphasis on processing only one solution at a time. The proposed algorit…

FOS: Computer and information sciencesComputer Science - Machine LearningInformation Systems and ManagementComputer scienceComputer Science - Artificial Intelligencemedia_common.quotation_subjectEvolutionary algorithmComputational intelligenceField (computer science)Theoretical Computer ScienceMachine Learning (cs.LG)Artificial IntelligenceSimplicitymemetic algorithmsevolutionary algorithmsmedia_common:Engineering::Computer science and engineering [DRNTU]business.industrycomputational intelligence optimizationComputer Science ApplicationsArtificial Intelligence (cs.AI)Control and Systems Engineeringmemetic computing:Engineering::Electrical and electronic engineering [DRNTU]Memetic algorithmAlgorithm designArtificial intelligencebusinessSoftware
researchProduct

Simple memetic computing structures for global optimization

2014

optimointidifferentiaalievoluutiomemetic computingdifferential evolutionlocal searchmemeettiset algoritmitgeneettiset algoritmitmemetic algorithmsevolutionary algorithmsmemetic structures
researchProduct

Algorithmic issues in computational intelligence optimization: from design to implementation, from implementation to design

2016

The vertiginous technological growth of the last decades has generated a variety of powerful and complex systems. By embedding within modern hardware devices sophisticated software, they allow the solution of complicated tasks. As side effect, the availability of these heterogeneous technologies results into new difficult optimization problems to be faced by researchers in the field. In order to overcome the most common algorithmic issues, occurring in such a variety of possible scenarios, this research has gone through cherry-picked case-studies. A first research study moved from implementation to design considerations. Implementation limitations, such as memory constraints and real-time r…

hyper-heuristicssingle-solution algorithmsdifferentiaalievoluutiodifferential evolutionlocal searchgeneettiset algoritmitmemeettiset algoritmitevoluutiolaskentamatemaattinen optimointiheuristiikkaalgorithms local searchkoneoppiminenmemetic computingstructural biasalgoritmitcompact algorithmssingle-solution
researchProduct

A Differential Evolution Framework with Ensemble of Parameters and Strategies and Pool of Local Search Algorithms

2014

The file attached to this record is the author's final peer reviewed version. The publisher's final version can be found by following the DOI link. The ensemble structure is a computational intelligence supervised strategy consisting of a pool of multiple operators that compete among each other for being selected, and an adaptation mechanism that tends to reward the most successful operators. In this paper we extend the idea of the ensemble to multiple local search logics. In a memetic fashion, the search structure of an ensemble framework cooperatively/competitively optimizes the problem jointly with a pool of diverse local search algorithms. In this way, the algorithm progressively adapts…

Structure (mathematical logic)Theoretical computer sciencebusiness.industryComputer scienceMeta-heuristicsComputational intelligenceAdaptive algorithmsDifferential evolutionLocal search (optimization)OptimisationDifferential evolutionAdaptation (computer science)businessGlobal optimizationAlgorithmMetaheuristicEnsembleMemetic ComputingCurse of dimensionality
researchProduct

Memory-saving optimization algorithms for systems with limited hardware

2011

evolutionary algorithmmemetic algorithmdifferentiaalievoluutiodifferential evolutiontietämystekniikkamemeettiset algoritmitgeneettiset algoritmitglobal optimizationevoluutioalgoritmitcomputational ingelligencelaskennallinen älykkyysevoluutiolaskentacompact optimizationtekoälymatemaattinen optimointialgorithmic enhancementskoneoppiminenoptimointioptimointimenetelmätmemetic computingalgoritmitevolutionary computingpopulation-less optimizationsingle-solution optimization
researchProduct